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A state-of-the-art review is provided for analyses on sidewall-heated natural convection 
flows in an enclosure. Particular emphasis is given to those subjected to nonideal physical 
conditions. Delineation is made of the effects of thermal boundary conditions with 
substantial spatial and temporal variations. Specifically, four topical issues are considered: 
the finiteness of thermal conductance of the solid walls, the variable physical properties 
of the fluid, time-dependent thermal loading on the surface walls, and finally, the 
three-dimensionalities. In the present article, the main focus is placed on laminar flows in 
a rectangular cavity. This reveals salient f low features while disallowing distractions due 
to other complexities. Discrepancies between the preceding conventional two- 
dimensional numerical predictions with idealized boundary conditions and the available 
experimental measurements are highlighted. These may be attributable to the unexplored 
aspects of realistic flows, and parts of these are explicitly discussed here. 
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Introduction 

A large volume of research has been directed to natural 
convection in enclosures. In particular, thanks to the advent of 
powerful digital computers, numerical studies on the subject 
have attracted much attention. These shed light on various 
aspects of confined convective flows, such as interactions 
between boundary layers near the bounding walls and interior 
core (Ostrach 1972, 1982) and effects of the cavity aspect ratio 
and the inclination angle on flow patterns (Catton 1978; 
Hoogendoorn 1986), to name a few. A review of the more recent 
literature was given by Ostrach (1988). It concentrates on flows 
generated by differential heating at the side walls, the so-called 
conventional convection, for which the externally applied 
temperature gradient is perpendicular to the direction of 
gravitational acceleration. An article by Allard (1992) 
specifically addresses issues surrounding the thermal boundary 
conditions of thermally driven cavity flows. The major 
emphasis is placed on the effects of the adiabatic and 
completely conductive horizontal walls. Also included in the 
review are accounts on radiative properties of the wall and the 
geometrical three-dimensionalities, i.e., the end effects. 
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It is well recognized that this class of flows has important 
technological applications: examples include thermal insula- 
tion of buildings using air gaps, solar energy collectors and 
storage devices, nuclear reactor safety, furnaces and fire control 
in buildings, crystal growth in materials processing, and so on. 

Another significant feature of the present problem is that it 
is mathematically well posed; the initial and boundary 
conditions can be specified without ambiguity. Therefore, it 
poses a suitable benchmark problem to test various 
computational techniques. For a two-dimensional (2-D) square 
cavity having differentially heated side walls and adiabatic 
horizontal surfaces, benchmark numerical solutions have been 
proposed in the Rayleigh number range of 10a< Ra < 10 s for 
air (de Vahl Davis 1983; Saitoh and Hirose 1989; Hortmann 
et al. 1990; Le Qu6r6 1991). The first set of data (de Vahl Davis 
1993) emerged from a comparison exercise that had attracted 
some 40 contributions using, chiefly, finite-difference and 
finite-element methods, and other approximation techniques; 
see de Vahl Davis and Jones (1983). These results are obtained 
by invoking the Boussinesq-fluid approximation and for a 
constant Prandtl number of 0.71. In the range of 10" < Ra < 
106 , more than two sets of benchmark solutions are available 
that have been generated using various different numerical 
schemes: a nonconservative second-order finite-difference 
method (FDM) in the stream function-vorticity formulation 
( $ - a ~ )  by de Vahl Davis (1983), a nonconservative 
fourth-order ~b -  m FDM by Saitoh and Hirose (1989), a 
conservative second-order finite-volume method in the 
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primitive variable formulation by Hortmann et al. (1990), and 
a pseudo-spectral method by Le Qu6r6 (1991). Representative 
physical quantities of the flow and thermal fields are compiled, 
which demonstrate satisfactory agreement among the data sets. 
To date, numerical results for high Rayleigh numbers, say, 
R a >  106 , are scarce. Le Qu6r6 (1991) dealt with the 
well-known double-glazing problem for very high Ra, and 
steady-state solutions have been found to exist for Ra around 
2 x l0 s (Paolucci and Chenoweth 1989; Henkes and 
Hoogendoorn 1990). In passing, a reminder should be given 
that lower-order descritization schemes fail to strictly satisfy 
some physical requirements even if the number of nodes is 
increased, as pointed out by Betts and Haroutunian (1983). 

From the viewpoint of practical applications of these 
convective flows, it is of vital importance to inquire into the 
extent of effects caused by imperfect, but realistic, physical 
conditions. Several features of special relevance to realistic 
systems may be, among others, nonuniform and time- 
dependent thermal boundary conditions at the walls, influence 
of variable physical properties, and the three-dimensionality of 
flow. In the present review article, thermally driven cavity flows 
are described, emphasizing the current understanding of the 
above-cited effects of realistic physical situations. An overview 
of the methodologies and physical models to deal with these 
conditions is provided. The existing knowledge will be 
illuminated in detail, and possible future research directions 
will be identified as a move toward performing more realistic 
experiments and numerical simulations of the practically 
relevant problems. 

In order to portray the changes in field patterns caused by 
the deviations from idealized conditions, a simple rectangular 
upright cavity is selected as the flow configuration of interest. 
It is stressed that such a simple flow geometry contains a wealth 
of information. The flow data serve to examine the fundamental 
physics involved in natural convection in enclosures. The 
ensuing sections outline the currently available literature on 
the subject matter on an item-by-item basis: the effects of 
nonidealized thermal boundary conditions, variable fluid 
properties, transient flows, time-varying boundary conditions, 
and the three-dimensionality of flow. 

The present review is not intended to be an up-to-date and 
exhaustive literature survey; rather, the primary aim is to 
convey to the reader a clear perspective of what has been 
accomplished and what remains to be investigated in order to 
narrow the gap between the idealized case studies and the 
reality of the basic flow features. 
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Figure 1 Schematic diagram of a differentially heated rectangular 
cavity. (a) Conjugate case; (b) nonconjugate case 

Non-idealized thermal  boundary conditions 

In the standard double-glazing problem mentioned in the 
foregoing section, the upper and lower horizontal plates are 
assumed to be perfectly insulated. The entire thermal energy 
entering through the heated isothermal side wall reaches the 
opposite cooled vertical wall. For a high-aspect-ratio cavity 
(A > 10, say), the flow and heat transfer may be regarded to 
be one-dimensional (I-D) over much of the whole cavity height, 
excluding regions near the horizontal surfaces. An analytical 
solution can be found for quasi 1-D convection in a slot formed 
between two differentially heated parallel isothermal plates. 
Consequently, the effects of heat conduction through the 
horizontal surface will be more pronounced for cavities of low 
aspect ratios. It is easily seen that complete prevention of heat 
transfer across the bounding surfaces is extremely difficult in 
actual systems, especially when air is used as the working fluid 
due to its very low thermal conductivity. On the other hand, 
in many technological applications, it is crucial to scrutinize 
the thermal properties of the solid walls bounding the fluid 
(examples can be found in thermal insulation of a building and 
in solidification processes of a semiconducting material). In 
such cases, the convection heat transfer analysis involves a 
simultaneous interaction of heat conduction inside the 
finite-thickness solid walls and fluid motions. A schematic 
diagram of this conjugate problem is shown in Figure la. The 
conventional natural convection inside a cavity (Figure lb) may 
be treated as a limiting case in which the wall thickness is very 

Notat ion 

A 
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Aspect ratio, H / L  
Gravitational acceleration 
Cavity height 
Unit vector (0, 1, 0) 
Thermal conductivity 
Cavity width 
Nondimensional pressure, (p'-po~XL/ot)2/p where 
p~ is hydrostatic pressure 
Rayleigh number, Ofl(Tn - Tc)L 3/~v 
Nondimensional temperature, ( T' -- Tc)/( Tn -- Tc) 
Cooled and heated isothermal sidewall 
temperatures, respectively 
Environmental temperature 
Nondimensional velocity vector, V'(L/~) 2 
Cavity depth 

Greek symbols 

c~ Thermal diffusivity 
fl Volumetric thermal expansion coefficient 
v Kinematic viscosity 
p Density 
z Nondimensional time, "~'ot/L 2 
V Gradient operator 

Subscr ip t  

w Solid wall 

Superscr ip t  

Dimensional value 
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thin. The pertinent governing equations for the fluid region 
under the usual Boussinesq approximation are 

V - V = O  (1) 

~V/~z + V" VV = - Vp + PrV2V + RaPrTi (2) 

BT/Bz + V- VT = V 2 T  (3) 

Supplementing the above equations, a heat-conduction 
equation for the solid region, with a constant isotropic thermal 
diffusivity and in the absence of internal heat generation, is the 
well-known Poisson equation: 

V2T = 0 (4) 

At the solid-fluid interface (x = 0, L and y = 0, H), the 
temperature and heat flux must be continuous. The latter 
requirement is mathematically expressed as 

where n is the coordinate normal to the interface. This problem 
formulation is complete when the boundary conditions at the 
upper and lower part of the external wall surfaces are 
prescribed, together with appropriate initial conditions for 
transient problems. 

A combined experimental and computational study was 
carried out by Kim and Viskanta (1984) for an air-filled cavity 
formed inside a solid block, having the void fraction q~ defined 
as L2/l 2 in the range of 0.25 < 4~ < 0.6. A comparison of 
measured and computationally predicted temperature distribu- 
tions for the fluid region is depicted in Figure 2. For  the specific 
case considered, a modified Rayleigh number, Ra*, 

Ofl(Th- Tc)L* 
Ra* - (6) 

votl 

is set equal to 1.01 x 106, and the thermal conductivity and 
diffusivity ratios of the solid wall material and the fluid are, 
respectively, 7.4 and 0.008. The effects of the finite-conductance 
walls are evident in the results. The surface temperature of the 
connecting horizontal boundaries varies in a nonlinear fashion, 
in contrast to a linear temperature profile obtainable for the 
case of perfectly conducting walls. The value of Ra is relatively 
high, but thermal stratification in the interior core region has 
not been well established. It should be noted that the 
temperature inversion is conspicuous near the lower-left and 
upper-right corners of the cavity. This creates the local 
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Figure 2 Comparison of the measured (symbol) and predicted 
(line) steady-state temperatures for air at R a ' =  1.01 x 10 o (Kim 
and Viskanta 1984) .  The left side wall is heated. The figures indicate 
temperature values 

"heated-from-bottom" situation, which destabilizes the flow at 
higher Rayleigh numbers (Henkes and Hoogendoorn 1990). 
The experimental data points acquired from spatially averaged 
(in the spanwise direction) 2-D interferometric fringe patterns 
and the computed isotherm contours based on the 2-D 
calculations are qualitatively consistent. The overall Nusselt 
number at the vertical side wall of the cavity has been obtained 
as a three-parameter empirical correlation (Kim and Viskanta 
1984): 

N-'-u = 0.410 (~0.93 (kw/k)OAaaRa,O.2 (7) 

for 1 0 5 < R a * <  107 , 0 . 3 < P r < 5 0 ,  0 .25<~b<0.6 ,  and 
3 < kw/k < 100. This correlation can be compared with the 
existing formulae for the conventional nonconjugate problem 
(Figure lb), 

~0.13Ra °'2s (completely conducting) 

N-u = [ 0.138Rs°3° (perfectly insulated) (8) 

due to Roux et al. (1978) in the range 104< Ra < 105 . In 
the above, the boundary conditions for the horizontal walls are 
either completely conducting or perfectly insulated. An explicit 
quantitative comparison is not possible owing to the difference 
in the definitions of the Rayleigh numbers used. 

The thermal characteristics in the fluid as well as in the solid 
for a tall cavity with finite-thickness walls (A = 10) were 
numerically investigated by Kasarh6rou and Le Qu6r6 (1989). 
It is well known that sidewall-heated natural convection, in 
general, exhibits oscillatory behavior when the critical Rayleigh 
number, Racr, is exceeded. It follows that the determination of 
R a ,  constitutes an important task in the convection studies. 
The available data (e.g., Paolucci and Chenoweth 1989; Henkes 
and Hoogendoorn 1990) point to the fact that there is a 
difference of approximately two orders of magnitude in the 
value of Ra~r, depending on whether the horizontal walls are 
completely conducting or perfectly insulated. The critical 
Rayleigh number for the conducting horizontal walls is smaller 
than that for insulated walls, due to the presence of the unstable 
thermal stratification that is attainable when the horizontal 
walls are completely conducting. A literature review for these 
two extreme cases is documented elsewhere (Papanicolaou and 
Jaluria 1992). Three distinctively different mechanisms have 
been proposed for the causes of flow instability, depending on 
the thermal conditions of the horizontal walls: the Ray- 
leigh-Bfnard instability, which is applicable to the conducting- 
wall case; the internal hydraulic jump at the adjoining corners 
where the sidewall boundary layers impinge; and the 
Tollmien-Schlichting traveling wave instability taking place 
inside the vertical boundary layers. Considerable research has 
endeavored to clarify the nature of these instabilities, which are 
believed to be an early stage of the transition towards 
turbulence (Papanicolaou and Jaluria 1992). 

The numerical study of Kasarhfrou and Le Qufr6 (1989) 
attempted to reveal the effects of wall conduction inside the 
vertical walls on the characteristics of oscillatory motions. The 
idealized horizontal walls (h = H) are assumed to be adiabatic. 
At Ra = 2.8 x 10 s, which is slightly above the critical 
Rayleigh number for the insulated horizontal wall, the thermal 
coupling is found to reduce the oscillation amplitude 
appreciably. However, the value of Rac, remains unchanged. 
Since this problem can find applications in materials processing 
and in nuclear reactor safety analyses, it is of interest to 
examine the effects of conduction of the bounding horizontal 
walls. 

On the side of computational modeling, solutions of a 
conjugate heat transfer problem require more calculations, 
since the conduction inside the solid regions has to be resolved 
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as well. Although some novel numerical treatments have been 
suggested, e.g., as harmonic mean conductivity of fluid and 
solid to deal with conjugate problems (Patankar 1980), a 
straightforward extension of a solution procedure for the flow 
field could be wasteful. Therefore, it is a logical step to devise 
a simple, yet sufficiently accurate, physical model to calculate 
the heat conduction in the solid walls. 

Recall the continuity constraint for the interfacial heat flux 
(Equation 5). If it is possible to assume 1-D conduction inside 
the solid, the constraint may be reduced to 

~ x  r,uid k t (9) 

where t = l - L  and T~ denotes the temperature of the 
environment. The parameter (k,/k)/t has the physical 
dimension of m -x, and it is referred to as the thermal 
conductance (Rahm and Walin 1979). The major attractiveness 
of this simplified model lies in the fact that one does not actually 
have to solve the heat conduction equation in the solid. The 
effects of the solid-wall heat conduction are incorporated by 
way of the boundary condition; hence, a substantial saving of 
computer time is possible. 

The accuracy of this model was examined in Kaminski and 
Prakash (1986); they compared computed results for the 
full-conjugate case (2-D model) with those of the above 
simplified treatment (1-D model). Both models were tested to 
a conjugate problem involving a square cavity with a heated 
finite-thickness side wall. The cooled wall and adiabatic 
horizontal plates were presumed to be very thin. The local heat 
flux distribution at the solid-fluid interface for Ra = 0.7 × 10 ° 
is plotted for various elevations in Figure 3. Computed results 
also include the predictions using the lumped parameter 
approach, in which the total heat transfer rate across the 
interface is estimated based on the assumption that the interface 
temperature is uniform. As can be seen, the difference between 
1-D and 2-D models is negligibly small, while the oversimplified 
lumped parameter approach can produce a reasonable 
prediction only in an averaged sense. 

Three-dimensional (3-D) simulations of natural convection 
in a box were performed by Le Pentrec and Lauriat (1990). 
They adopted the simple heat conduction model of Rahm and 
Walin. The above-mentioned 1-D thermal conductance model 
is applied to the two end plates (z = 0, W). Radiation effects 
were accounted for in terms of a correction factor for the 
thermal conductance. Air and water were considered as the 
media filling the cavity. The variations in the absolute values 
of the average Nusselt number at the isothermal side wall for 
various cavity aspect ratios (depth/width, Az) are displayed in 

20,00 r two-dimensional  model 
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Figure 3 Comparison of the local heat flux at the solid-fluid 
interface predicted by different conduction models for Ra = 0.7 x 
I 0 s (Kaminski and Prakash 1986) 
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Figure 4 Variations of the absolute value of the heat transfer rate 
at the isothermal walls versus the depth aspect ratio for an air-filled 
enclosure at Ra = I0  s, kwL/kt= 11.5 (with radiation correction), 
and T O = T c (Le Pentrec and Lauriat 1990). Nuc and NUll, at the 
cooled and heated walls, respectively; NUad, with adiabatic end 
walls; NU2D, 2-D results 

Figure 4. The temperature of the environment, T~, is set equal 
to the cooled isothermal wall temperature. The discrepancy 
between the heat transfer rates for the heated wall (Nun) and 
cooled wall (Nuc) is attributed to the heat transfer across the 
end walls, since the horizontal walls are adiabatic. The results 
indicate that, if A~ is larger than 10 for an air-filled cavity, the 
end effects are very small. They find that the end effects in the 
case of water as the working fluid are far less significant; only 
A= = 2 will suffice to suppress satisfactorily the 3-D effects. For 
an air-filled cubical container, Fusegi et al. (1993) show the 
effects of heat conduction at the horizontal and end walls 
as well as the effects of the environmental temperature, T~, by 
using the thermal conductance model. Due to the small 
depth-to-width ratio (A= = 1), the three-dimensionality is 
evident. These computational works demonstrate the robust- 
ness of the thermal conductance approach. They assumed 
constant values of thermal conductances; however, it could be 
even more useful if the thermal conductances are allowed to 
have proper spatial variations for modeling actual physical 
phenomena more faithfully. 

T h e  v a r i a b l e - p r o p e r t y  e f f e c t s  

In the majority of numerical studies for natural convection 
flows, the Boussinesq approximation is customarily invoked. 
For incompressible flows, the computational advantage is 
evident when one closely examines the calculation procedure 
of the equation of state to determine the density field. An 
explicit step is needed to compute density when working with 
a non-Boussinesq fluid. The Boussinesq approximation 
bypasses the task of density evaluation; the temperature 
computed from the energy equation is directly substituted into 
the buoyancy term of the momentum equation. 

The necessary prerequisite to justify the use of the Boussinesq 
approximation is that the overall temperature difference should 
be sufficiently small. Quantitative assessments of this point 
have been performed as to natural convection in a differentially 
heated square cavity by Zhong et al. (1985). The main 
conclusion was that, when the overall temperature difference 
f( = ( T  n - Tc)/Tc) is less than 0.1, the Boussinesq approximation 
yields adequate predictions of the flow field. A somewhat wider 
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margin for 6 may be allowed to compute the average heat 
transfer rate. The computations of Zhong et al. (1985) suggested 
that reasonably accurate values of average heat transfer rates 
could be obtained by using the Boussinesq approximation for 
up to 6 ~ 0.2. 

The mathematical formulation for a variable-property fluid 
is understandably far more complex. The complete governing 
equations are available in, e.g., Leonardi and Reizes (1981). 
Their steady-state results for sidewall-heated cavities (with 
A = 1 and 2) illustrate asymmetric field patterns, which are 
caused by the temperature dependence of the fluid properties. 
Both the viscosity and thermal conductivity were assumed to 
be temperature dependent in their study. 

Hyun and Lee (1989) demonstrated that in the transient 
process of heat-up, the variable viscosities modeled in an 
exponential form caused the heat inflow to the cavity to exceed 
the heat outflow. Hence, the cavity acted as a receiver of net 
heat input until the energy balance was reached at the steady 
state. This situation would not occur for the constant-viscosity 
case, since the idealized field patterns will exhibit exact 
symmetry about the vertical centerline. 

The stability of a variable-property fluid flow has been 
extensively investigated by the numerical work of Chenoweth 
and Paolucci (1986). The flow-regime diagram is constructed 
in Figure 5. The parameter e, denoting the overall temperature 
difference, is defined as (T H - Tc)/(T H + Tc). Air is considered 
as the medium for which the variations of the viscosity and 
thermal conductivity are assumed to obey the Sutherland law. 
It can be seen that the critical Rayleigh number for 
variable-property fluids is, in general, lower than that of the 
Boussinesq fluid. 

T r a n s i e n t  p r o c e s s e s  

In the context of the present review, the transient phenomena 
of natural convection in cavities may be classified into two 
categories. The first refers to the time-evolving process in an 
approach to the large-time state. The second occurs when the 
external boundary conditions are prescribed in a time- 
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dependent manner. The large-time behavior may be 
characterized by a stationary state consisting of a sequence of 
periodic phenomena. Although these transient processes are 
important in many thermal engineering and modern techno- 
logical innovations, studies on transient (time-varying) natural 
convection have received far less attention. 

Patterson and Imberger (1980), in a classical treatise, 
addressed the fundamental mechanisms involved in the 
transient behavior of natural convection in a 2-D rectangular 
cavity, Their analysis centered on the flow of an initially 
isothermal fluid, driven by abruptly raising and lowering the 
respective vertical sidewall temperatures of the rectangle. 
Relying heavily on scaling arguments and physical insight, 
Patterson and Imberger provided broad classifications of the 
transient flow regimes in terms of several nondimensional 
parameters. A key contention that emerged from their analysis 
was the existence of a decaying oscillatory approach to steady 
state; they stated that this behavior reflected the result of a 
transient system-scale internal wave activity. It was demon- 
strated that the criterion for such oscillatory behavior was 

Ra > praA -'~ (10) 

Patterson and Imberger presented a few illustrative numerical 
solutions for a square cavity, and their results were shown to 
be compatible with their theoretical expositions. 

The presence of the internal gravity waves in transient cavity 
convection has been a topic of intense discussion in the recent 
literature. The issue of the internal gravity waves does not 
appear to have been completely resolved for the flow 
configuration of Patterson and Imberger (1980). Laboratory 
measurements (Yewell et al. 1982) employing shallow cavities 
(A = 0.0625 and 0.0112) showed no evidence of waves, pointing 
to an apparent discrepancy between theory and experiment. 
Later, Patterson (1984) proposed more detailed orderings for 
the regime classifications, and asserted that the experiments by 
Yewell et al. were actually performed in a regime in which 
internal wave activity would not be expected. Ivey (1984) 
conducted similar experiments in a water-filled square cavity 
at Rayleigh numbers of the order of 109, which were much 
higher than the values (Ra ~ 105) used in the numerical 
computations of Patterson and Imberger (1980). The results 
did not, however, give conclusive evidence of the regular 
internal wave oscillations expected; however, there were 
indications of a much higher-frequency signal that appeared to 
be associated with the downstream behavior of the horizontal 
intrusions from the corners. This was interpreted by Ivey as an 
internal hydraulic jump. 

Transient-flow visualization and thermal-field visualization 
were undertaken by Lee and Kauh (1984) for a square cavity 
filled with water (Pr = 5.9) for 105 < Ra < 108. This parameter 
range falls within the regime classification for which the 
presence of internal waves is expected. Figure 6 reproduces a 
series of photographs showing evolutions of transient fields at 
Ra = 2.5 x 107. The locations of the temperature front are 
clearly discernible in the interferograms. A noteworthy feature 
is an overshoot of the temperature front as it intrudes into near 
the mid-height of the boundary layer at the opposite side wall 
(Figure 6 (10)) and then moves backward slightly (Figure 6 (12)). 
This behavior was observed only once in the entire transient 
process, and clear signs of oscillatory activities were not 
detected in their measurements. Based on an estimation of the 
internal Froude number, it appeared that an internal hydraulic 
jump was present near the corner of the cavity. Note that the 
Rayleigh number range of Lee and Kauh's (1984) experiments 
was much lower than that considered in Ivey (1984). 

The properties of these intrusions and the associated 
high-frequency waves have been debated in numerical studies 
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Figure 6 Flow and temperature fields visualization results for 
Ra = 2.5 x 107 and Pr = 5.9 (Lee and Kauh 1984) 

by Paolucci and Chenoweth (1989), Schladow et al. (1989), 
Schladow (1990), and Armfield and Patterson (1991). A 
combined numerical and experimental investigation (Patterson 
and Armfield 1990) examined the apparent conflict between the 
numerical and existing experimental results with respect to the 
oscillatory approach to steady state. They identified the 
principal features of the flow development, and a description 
of the associated generation mechanisms was offered for 
R a = 3 . 2 6  x l0 s , P r = 7 . 5 ,  and A =  1. This experimental 
condition falls within the regime boundaries proposed by 
Patterson and Imberger (1980) for which clear oscillatory 
behavior is anticipated. Their conclusions were that the scaling 
arguments given in Patterson and Imberger were verified, and 
that the high-frequency signals observed experimentally by Ivey 
(1984) and numerically (Paolucci and Chenoweth 1989; 
Schladow 1990) were thought to be sorts of instabilities. Hyun 
and Lee (1989) also conducted a numerical study on the 
existence of internal wave oscillations over broad ranges of 
both Ra and Pr. When Pr > 1, a distinct oscillatory behavior 
occurred if Ra > Pr4A -4. The period of oscillations was 
comparable to the period of internal gravity waves. These were 
in support of the flow-regime classifications of Patterson and 
Imberger. When Pr < 1, an oscillatory approach to the steady 
state is detected only when Ra is sufficiently high to render a 
strong boundary-layer-type flow. Using mixtures of glycerol 
and water to enable wide variations of Pr, Jeevaraj and 
Patterson (1992) acquired measurements encompassing several 
flow regimes of Patterson and Imberger. Their results were also 
consistent with the flow-regime classifications. 

Full-scale and reduced-scale model experiments were 
conducted using a shallow rectangular enclosure with aspect 
ratio of 1/3 at Ran (based on the room height H) of 
approximately l0 t 0 (Olson and Glicksman 1991). The transient 
processes to steady-state convective flow patterns, which 
started from two distinctively different initial conditions, were 
investigated. An air-filled cavity was constructed for the 
full-scale test, while a refrigerant was used for the scale-model 
experiments. This seems to be the only available transient 
measurement using air. The first case dealt with the standard 
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transient problem; namely, the flow was initially motionless, 
and all the walls were at a constant temperature. The 
temperatures of one or both side walls were instantaneously 
raised or lowered. In another type of transient test, the 
pre-existing steady-state flow was disturbed by a differential 
sidewall heating. Measurements were made of the process of 
the return to the steady state after the disturbance was 
removed. The mechanical disturbance was provided by stirring 
the flow by operating ceiling vanes. Based on smoke-flow 
visualizations using a scale model, Olson and Glicksman 
observed that the characteristic length of the flow could be 
scaled with the distance that the flow traveled up the vertical 
wall and through a horizontal loop, i.e., H + 2L. Defining a 
buoyancy convection velocity V o = (g f l (T  n - TIn)H) 1/2, where 
T m is the mean fluid temperature, Olson and Glicksman 
proposed a convection time constant to scale the time of 
convection-dominated flow processes. The time constant z . . . .  
was chosen to be 

z . . . .  = ( H  + 2 L ) / V  o (11) 

They showed that for the evolution of flow from a quiescent 
state, the initial transient phase lasted for approximately 30 
nondimensional time units (z ' / z  . . . .  ). In this phase, the 
temperature in the upper half of the core region increased. This 
was accomplished by formation of the circulation near the 
ceiling when one side wall was suddenly heated. Temperatures 
in the lower core region increased at a slower rate due to the 
horizontal boundary-layer entrainment. This is illustrated in 
Figure 7, which depicts the vertical temperature profiles. It was 
further stated that %°,, was the proper measure to characterize 
the return to steady state in the case of the imposed mechanical 
disturbance. 

When the thermal boundary conditions at the cavity walls 
vary continuously in time, time-dependent natural convection 
flow ensues. Of particular interest would be the cases in which 
the thermal boundary conditions undergo periodic changes. 
Specific applications of these situations are abundant. In 
electronic equipment cooling, electric components are en- 
ergized intermittently in a periodic manner. Another example 
may be found in building heat transfer; the building is exposed 
to variations in the ambient conditions and air-conditioning 
systems. The daily changes of these external conditions can be 
approximately modeled by periodic fluctuations. 

The response of the flow in a tall vertical cavity (A = 3), 
subjected to periodic surface temperature variations of the side 
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Figure 7 Vertical temperature profiles at x/L = 0.5 for transient 
heating with no cooling for the scale model (Olson and Glicksman 
1991) 
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walls, was studied analytically and numerically by Yang et al. 
(1989). The side wall temperature at x = L varies as a sinusoidal 
function: 

T = sin (2z~fz) (12) 

where f is a dimensionless frequency. The opposite side wall 
(x = 0) also experiences a sinusoidal temperature change, but 
with a phase lag of n radians. The primary objective of this 
investigation was the validation of a numerical technique by 
comparing the predictions with those of a closed-form analytic 
solution for a cavity with very high aspect ratio. Assuming 
adiabatic horizontal walls, the finite-difference numerical 
solutions were obtained for 101< Ra < 106 and Pr = 7.0. 
Figure 8 displays the heat-transfer rate Q and the phase shift 
03 as functions of Ra. The amplitude of the heat transfer rate 
increases with Ra due to the pronounced convection effects. As 
to the phase shift, it attains an almost constant value that is 
close to ~/4 for low and moderate Ra; it drops off sharply as 
the flow bears the boundary-layer character Ra > 10s). 

Natural convection in a square cavity, when the heated side 
wall has a sinusoidal temperature fluctuation, was numerically 
studied by Kazmierczak and Chinoda (1992). The effects of 
amplitude and period of the temperature variations are 
examined for fixed Ra and Pr, Ra = 1.4 x 105 and Pr = 7. It 
is demonstrated that a secondary flow cell of smaller size 
appears periodically in response to the fluctuations of the 
surface temperature. This effect is seen near the cavity upper-left 
corner where the heated-wall boundary layer impinges on the 
ceiling. Although the heat transfer rate at the heated wall 
fluctuates in a periodic manner, the surface temperature 
variation exerts insignificant effects on the Nusselt number at 
the cooled side wall, which does not deviate much from the 
value of nonoscillatory wall temperature. 

The flow parameter ranges are far extended in a numerical 
and theoretical investigation by Lage and Bejan (1993); namely, 
103 < Raq < 109 and 0.01 < Pr < 7, where Raq is a modified 
Rayleigh number based on the uniform heat flux q" imposed 

= g3qm H /~cvk, qm being the mean to the heated side wall, Raq ,, 4 , 
value of the heat flux. Instead of the sinusoidal temperature 
variation, a pulsating heat input is assigned at the heated wall. 
A novel feature of the flow is resonance characterized by 
maximum fluctuations in the total heat transfer rate through 
the vertical midplane of the cavity. The heat transfer 
enhancement due to the resonance is seen to be pronounced 
as Ra increases. 

There appears to be no reported experimental work on 
natural convection with time-varying boundary conditions. It 
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Figure 8 Variations of the phase shift - (03 - 7z/4) and Q with Ra 
(Yang et al. 1989)  

is believed that the difficulties are formidable in realizing 
well-controlled thermal boundary conditions in the experiment. 

T h r e e - d i m e n s i o n a l  e f f e c t s  

Most prior numerical and experimental investigations have 
been restricted to 2-D situations. For computational studies, 
this situation was unavoidable in view of the limited capability 
of the conventional mainframe machines and the prohibitively 
high cost for computing 3-D flows. Needless to say, in order 
to move closer to the practical systems, 3-D computations are 
highly desirable. However, due to the constraint of available 
computational resources, full-scale 3-D simulations are still in 
an infant stage. Earlier 3-D numerical solutions (e.g., Ozoe et 
al. 1976; Mallinson and de Vahl Davis 1977) have illustrated 
rudimentary flow structures in a rectangular box. The 
steady-state 3-D streamlines exhibit double-helical patterns 
and significant transverse flows. These endeavors are limited 
to low Rayleigh numbers. Consequently, the sidewall boundary 
layers and a nearly stagnant interior-core structure were not 
distinctively discernible. The case of Ra = 106 was studied by 
Lee et al. (1988). The qualitative features of double-helical 
structure remained unchanged, although the inner helix had its 
center inside one of the two secondary vortices formed near a 
side wall. 

The presence of the end walls in an actual enclosure exerts 
3-D effects, particularly in the regions close to the walls. The 
secondary corner vortices, with their axes normal to the x z 
plane, were found in the region adjoining the vertical lines 
formed by the side and end walls in Ra > 106 (Lankhorst and 
Hoogendoorn 1988). The magnitude of these secondary eddies 
is much smaller than that of the primary roll cell, the axis of 
which is perpendicular to the x -y  plane. Obviously, the 
existence of such a 3-D flow structure could not be predicted 
under the 2-D assumption. 

An experimental and computational study was reported for 
a long enclosure having a square cross section and a depth 
aspect ratio (W/L) of 2.72 (Weaver and Viskanta 1990). 
Nitrogen was the working fluid. Flow visualization, using 
smoke and Mach-Zehnder interferometric temperature mea- 
surements, was undertaken for two values: Ra = 1.34 x 105 
and Ra = 6.24 x 105. The results clearly demonstrate the 
existence of 3-D fluid motions in the z-direction. The qualitative 
features of the flow field are in accord with the numerical 
predictions. However, as to the quantitative assessment of the 
temperature distribution in the midsymmetry plane (z = W/2), 
discrepancies between the measured and calculated profiles are 
pronounced as the side walls are approached. It should be 
noted that these two sets of data could not be compared 
directly, since the experimentally obtained temperature 
distribution has been spatially averaged and the axial 
(z-directional) variations of the temperature field are not 
resolved precisely. 

Hiller et al. (1989) experimentally examined 3-D flows in a 
cubic enclosure for high Prandtl number fluids (200 < Pr < 
7000) composed of mixtures of glycerol and water. The flow 
structure is described with a topological interpretation of the 
singularities in the flow, such as foci, nodes, and saddle points. 
Experiments were performed to observe the transition from 
one-roll (unicellular flow) and two-roll systems. The transition 
between these flow patterns is a continuous process as Ra is 
gradually raised. Subsequently, an experimental and numerical 
effort was made (Hiller et al. 1990). The study documented 
unresolved discrepancies between the computations and 
experiments in the value of the critical Ra at which the spiral 
patterns were observed in the enclosure. As to the causes, 
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conduction from the uninsulated walls or highly temperature- 
dependent fluid property variations was listed. 

For more quantitative assessments of the 3-D flow 
characteristics, the previous numerical investigations do not 
have proper spatial resolutions. Furthermore, they were 
restricted to steady-state results. 

A series of comprehensive 3-D calculations has been recently 
performed (Fusegi et al. 1991a, 1991b, 1992, 1993) with a view 
toward delineating 3-D cavity flows inside an air-filled cubical 
box. Relying heavily on the vector-processing supercomputers, 
spatial resolutions of these 3-D solutions are refined to a level 
comparable to those achieved in previous high-accuracy 2-D 
computations. The majority of the results were generated for 
the cases of the thermally insulated horizontal and end walls, 
although conducting walls were also considered. 

Figure 9 represents the profiles of the Nusselt number at an 
isothermal side wall averaged over each z-station (Nu(z)). For  
Ra < 105, N-u(z) increases monotonically as the symmetry 
plane (z = 0.5) is approached. In contrast, at Ra = 106, two 
minor peaks appear at around z = 0.2 and 0.8, due to the 
presence of intense convective flows in the z-direction. The 
overall Nusselt number, Nu . . . . .  11 (=SolN-u(z) dz), and N-u(z)2 o 
for a 2-D enclosure (regarded as Nu . . . . .  , for 2°D situations) 
are also plotted in the same figure. The difference between 
Nu . . . . .  n and Nu(z)2 D gradually decreases as Ra is raised. This 
is explained by the fact that at higher Ra, the 3-D variations 
in Nu(z) are confined into a narrower region close to the end 
walls, and Nu(z) in the remaining portion is almost uniform. 
The difference between the numerical values of Nu(z) at the 
midsymmetry plane (z = 0.5) and NU(Z)2D is seen to be minor 
for the Ra range investigated, indicating that the 2-D 
assumption can provide a good first estimate for this cubical 
cavity. However, this would not be necessarily valid if different 
thermal boundary conditions are assigned at the end walls. 
Note that the end walls are assumed to be perfectly insulated 
in the above investigation. 
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The time evolutions of the temperature and flow fields for a 
heat-up process at Ra = 106 were examined numerically by 
Fusegi et al. (1991b). Perspective views of the fields are 
displayed in Figure 10. Initially, the fluid is at a uniform 
temperature and motionless. A sudden differential heating at 
z > 0 at the two vertical side walls (x = 0 and 1) creates sharp 
temperature gradients in the proximity of the isothermal walls. 
In the central region of the enclosure, the fluid is still at the 
initial uniform temperature; thus, the heated fluid near the side 
wall at x = 1 starts to rise, and the cooled fluid near x = 0 
moves downward. Subsequent to this initial development, the 
heated and cooled fluids flow along the ceiling and floor of the 
enclosure, respectively, in the opposite directions. After some 
time, these flows meet each other near the corners of the 
horizontal walls. The flow field at this stage is sketched in 
Figure 10a. Near the end walls (z = 0 and 1), the isotherms 
adjacent to the horizontal walls ( y =  0 and 1) develop 
appreciable z-variations. This is due to the no-slip conditions 
imposed at the end walls. Consequently, vorticity is generated 
in these wall regions• 

After the fluid layers merge, a piling up of the fluid in the 
corner areas between the side walls and horizontal walls takes 
place, as expounded by Patterson and Imberger (1980) for 2-D 
situations. This increases the overall temperature gradients in 
the vicinity of the isothermal walls. In the interior regions, the 
thermal field begins to stratify, as demonstrated in Figure 10b. 
The vorticity field illustrates that intense flow is now mostly 
confined into thin layers in the proximity of the vertical 
isothermal walls, in conjunction with the formation of the 
stratified structure in the interior. 
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As time progresses, the thermal stratification is substantially 
accomplished, with the resulting near-stagnant interior core. As 
the steady state is approached (see Figure 10c), the global field 
is characterized by a combined structure of the boundary layers 
near the walls and the almost-stagnant interior core. It would 
be worth noting that the three-dimensionality of the fields is 
discernible, especially in the early transient stage of the flow. 

In accordance with the regime classification of Patterson and 
Imberger (1980) for a 2-D cavity, the flow condition (Ra = 106, 
Pr = 0.71, and A = 1) satisfies the previously cited criterion 
(Equation 10) for the presence of internal waves. The period of 
oscillation for the 2-D case is given as 

zN = 2~(1 + A2) 1/2 (13) 

where ZN = z'N, N being the Brunt-V~iis~il~i frequency: 

N = [gfl(T n -- Tc)/L ] 1/2 (14) 

As depicted in Figure 11, oscillatory behavior is conspicuous 
in the computed results of time history of the overall Nusselt 
number at the midplane of the isothermal side walls located at 
x = 0.5. The oscillation period is found to be approximately 
12.0, which is consistent with the 2-D analytical estimate. The 
oscillations in Figure 11 decay after a few cycles due to the 
effects of viscosity, leaving some uncertainties in determining 
the exact value of the period based on the computed results. 

In an insightful experimental investigation, Briggs and Jones 
(1985) employed a nearly cubic enclosure with completely 
conducting horizontal walls. They demonstrated that the 
steady-state flow ceased to exist when Ra slightly exceeded 106. 
Beyond the critical Ra, regular steady periodic oscillations 
appeared in the field, the frequency of which took discrete 
values as Ra was raised. Since the publication of this pioneering 
study, much work has been done on the analytical and 
computational front to identify the nature of the instability. 
For  a 2-D square cavity, Henkes and Hoogendoorn (1990) 
attributed the onset of instability to the Rayleigh-B6nard type 
arising near the horizontal boundaries due to the presence of 
temperature inversion. Based on a linear stability analysis of 
the 2-D steady-state equations, Winters (1987) demonstrated 
that the onset of the oscillatory convection occurred as Hopf 
bifurcation. The prediction R a ,  was shown to be in good 
agreement with the measured value of Briggs and Jones (1985). 
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natural convection in air at Ra = 106 (Fusegi et al. 1991 b). The time 
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In a supplementary account of their experimental investigation, 
Jones and Briggs (1989) performed 2-D calculations for certain 
exemplary cases to gain insight into the local characteristics of 
the fields. They reported that the measured horizontal 
centerline velocity profiles at Ra = 9 × 106 were nearly 20% 
larger than the 2-D numerical results. As to the vertical wall 
centerline velocity, experimental and calculated values differed 
no more than 3%. The onset of oscillations was about 
Ra = 3 × 106 in the experiment; however, the computational 
predictions, including those conducted independently (Le 
Qurr6 and Alziary de Roquefort 1986; Winters 1987; Henkes 
and Hoogendoorn 1990), were found to be consistently lower, 
at around Ra = 2.1 × 106. Jones and Briggs (1989) ascribed 
these discrepancies to the undetected three-dimensionalities of 
flow present in an actual experimental setup. 

These conjectures could only be substantiated by performing 
3-D investigations. Fusegi et al. (1992) carried out a full 3-D 
computation for a cubic cavity at Ra = 8.5 × 106. The results 
exhibited that the bulk of the flow field could be thought to be 
nearly 2-D. This is probably due to the imposition of 
transverse-uniform temperature condition at the horizontal 
boundary wails. An inspection of the centerline velocity profiles 
at the symmetry plane (z = 0.5) is revealing. The agreement 
between the 3-D numerical results and the experimental data 
of Briggs and Jones (1985) is satisfactory. It is recalled that the 
previous 2-D computations of Jones and Briggs (1989) 
produced equally consistent results. 

Computed results of a more recent high-resolution 
calculation (Janssen et al. 1993) indicate that the mechanism of 
instability in a 3-D cavity is of 2-D nature. An estimated critical 
Rayleigh number is approximately 2.3 x 106, which is only a 
10% increase compared to the previous 2-D predictions. 

A critical area that needs significant improvements is 
numerical visualization techniques for computed 3-D results. 
Since the field is 3-D in nature, proper and accurate 
interpretations of numerical data may be greatly aided by 
elaborate 3-D computer graphics capabilities. 

An isolevel contour map for, e.g., temperature, and a velocity 
vector plot, which is the standard representation tool of the 
2-D field structure, is not suitable for effectively conveying 3-D 
information. Perspective views of the 3-D fields, such as those 
shown in Figure 10, may serve better to gain overall pictures 
of the fields. (It should be remarked that in the original figures, 
each isolevel surface is represented by a different color.) 
Stereographic presentations of 3-D flows have been attempted 
in Pepper (1987); stereographic films and videotapes would be 
natural extensions of this technique, and they can enhance the 
understanding of complex 3-D flow fields. 

For 3-D calculations, postprocessing of voluminous numer- 
ical data is as important as the process of obtaining solutions, 
and it is definitely one of the areas in which much progress is 
expected. 

C o n c l u d i n g  r e m a r k s  

As briefly outlined in the preceding sections, an appreciable 
body of knowledge has been accumulated regarding the 
principal characteristics of a geometrically simple enclosure, 
particularly for 2-D situations. The state of the nonidealized 
boundary walls exerts a measurable impact on the field features 
well into the cavity interior. Consequently, experimenters 
should exercise proper care to have good control over the 
thermal boundary conditions, particularly when working with 
air, since certain of the idealized conditions used in 
computations are virtually unrealizable. The variable-property 
effects can cause substantial deviations from the idealized 
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behav io r  under  the Boussinesq approximat ion .  An experi- 
menta l  verification is warranted ,  together  with theoret ical  
considerat ions,  for the adequacy of the Boussinesq approx ima-  
t ion in a high Ra range. 

Trans ien t  flow characterist ics have not  been explored in 
sufficient detail. Var ious  aspects of the  dynamics  p rominen t  in 
the t rans ient  s tate  have been touched  upon ;  however,  they are 
still far f rom a stage of comprehens ive  unders t and ing  of this 
technological ly i m p o r t a n t  subfield of research. 

Owing  to the adven t  of h igh-per formance  supercomput ing ,  
engineering 3-D compu ta t i ons  become increasingly feasible. 
Quan t i t a t ive  evaluat ions  of numerical  results may  now be 
conducted  on  the local flow variables. As stated earlier, in order  
to have m a x i m u m  uti l izat ion of the numerical  data ,  a great  
deal of work is called for to devise effective da ta  reduct ion and  
presenta t ion  methods.  
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Note added in proof 

In a recent article (Ravi, M. R., Henkes,  R. A. W. M. and  Hoogendoorn ,  C. J. 1994. O n  the h igh-Rayle igh-number  
s t ructure  of s teady laminar  na tura l -convec t ion  flow in a square  enclosure. J. Fluid Mech., 262, 325-351), the corner  s t ructure  
associated with flow separa t ion  and  recirculation,  which was previously considered to be an  internal  hydraul ic  j u m p  (Ivey 
1984; Lee and  K a u h  1984), is ascribed to purely thermal  effects. They assert  that ,  based on a rguments  of mechanical  energy loss 
at the corner,  in ternal  hydraul ic  j umps  could not  be present. 
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